streamsight.evaluators.MetricAccumulator
- class streamsight.evaluators.MetricAccumulator
Bases:
object
- __init__()
Methods
__init__
()add
(metric, algorithm_name)Add a metric to the accumulator
Macro metric across all timestamps
df_metric
([filter_timestamp, filter_algo, level])Dataframe representation of the metric
Micro metric across all timestamps
User metric across all timestamps
Attributes
- add(metric: Metric, algorithm_name: str) None
Add a metric to the accumulator
Takes a
Metric
object and adds it under the algorithm name. If the specified metric already exists for the algorithm, it will be overwritten with the new metric.- Parameters:
metric (Metric) – Metric to store
algorithm_name (str) – Name of the algorithm
- df_macro_level_metric() DataFrame
Macro metric across all timestamps
- Returns:
_description_
- Return type:
pd.DataFrame
- df_metric(filter_timestamp: int | None = None, filter_algo: str | None = None, level: MetricLevelEnum = MetricLevelEnum.MACRO) DataFrame
Dataframe representation of the metric
Returns a dataframe representation of the metric. The dataframe can be filtered based on the algorithm name and the timestamp.
- Parameters:
filter_timestamp (Optional[int], optional) – Timestamp value to filter on, defaults to None
filter_algo (Optional[str], optional) – Algorithm name to filter on, defaults to None
level (MetricLevelEnum, optional) – Level of the metric to compute, defaults to MetricLevelEnum.MACRO
- Returns:
Dataframe representation of the metric
- Return type:
pd.DataFrame
- df_micro_level_metric() DataFrame
Micro metric across all timestamps
- Returns:
_description_
- Return type:
pd.DataFrame
- df_user_level_metric() DataFrame
User metric across all timestamps
Computation of metrics evaluated on the user level
- Returns:
_description_
- Return type:
pd.DataFrame
- df_window_level_metric() DataFrame
- metrics
Deprecated since version Use: window_level_metrics instead
- property user_level_metrics
- property window_level_metrics: defaultdict