streamsight.settings.TimestampSplitter
- class streamsight.settings.TimestampSplitter(t: int, t_lower: int | None = None, t_upper: int | None = None)
Bases:
Splitter
Splits data by timestamp.
Split data so that the first return value contains interactions in [t-t_lower, t), and the second those in [t, t+t_upper].
If t_lower or t_upper are omitted, they are assumed to have a value of infinity. A user can occur in both return values.
Attribute definition
past_interaction
: List of unlabeled data. Interval is [0, t).future_interaction
: Data used for training the model. Interval is [t, t+t_upper) or [t,inf].
- param t:
Timestamp to split on in seconds since epoch.
- type t:
int
- param t_lower:
Seconds before t. Lower bound on the timestamp of interactions in the first return value. Defaults to None (infinity).
- type t_lower:
int, optional
- param t_upper:
Seconds past t. Upper bound on the timestamp of interactions in the second return value. Defaults to None (infinity).
- type t_upper:
int, optional
- __init__(t: int, t_lower: int | None = None, t_upper: int | None = None)
Methods
__init__
(t[, t_lower, t_upper])split
(data)Splits data so that past_interaction contains interactions in [t-t_lower, t), and future_interaction those in [t, t+t_upper].
Attributes
String identifier of the splitter object, contains name and parameter values.
The name of the splitter.
- _abc_impl = <_abc._abc_data object>
- property identifier
String identifier of the splitter object, contains name and parameter values.
- property name
The name of the splitter.
- split(data: InteractionMatrix) Tuple[InteractionMatrix, InteractionMatrix]
Splits data so that past_interaction contains interactions in [t-t_lower, t), and future_interaction those in [t, t+t_upper].
- Parameters:
data (InteractionMatrix) – Interaction matrix to be split. Must contain timestamps.
- Returns:
A 2-tuple containing the past_interaction and future_interaction matrices.
- Return type:
Tuple[InteractionMatrix, InteractionMatrix]