base
logger = logging.getLogger(__name__) module-attribute ¶
Algorithm ¶
Bases: BaseEstimator, BaseModel, ParamMixin
Base class for all streamsight algorithm implementations.
Source code in src/streamsight/algorithms/base.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |
ITEM_USER_BASED instance-attribute ¶
seed = 42 instance-attribute ¶
rand_gen = np.random.default_rng(seed=(self.seed)) instance-attribute ¶
description property ¶
Description of the algorithm.
:return: Description of the algorithm :rtype: str
identifier property ¶
Identifier of the object.
Identifier is made by combining the class name with the parameters passed at construction time.
Constructed by recreating the initialisation call. Example: Algorithm(param_1=value)
:return: Identifier of the object :rtype: str
name property ¶
Name of the object's class.
:return: Name of the object's class :rtype: str
params property ¶
Parameters of the object.
:return: Parameters of the object :rtype: dict
IS_BASE = True class-attribute instance-attribute ¶
get_default_params() classmethod ¶
Get default parameters without instantiation.
Uses inspect.signature to extract init parameters and their default values without instantiating the class.
Returns:
| Type | Description |
|---|---|
dict | Dictionary of parameter names to default values. |
dict | Parameters without defaults map to None. |
Source code in src/streamsight/algorithms/base.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
set_params(**params) ¶
Set the parameters of the estimator.
:param params: Estimator parameters :type params: dict
Source code in src/streamsight/algorithms/base.py
94 95 96 97 98 99 100 | |
fit(X) ¶
Fit the model to the input interaction matrix.
The input data is transformed to the expected type using :meth:_transform_fit_input. The fitting is done using the :meth:_fit method. Finally the method checks that the fitting was successful using :meth:_check_fit_complete.
:param X: The interactions to fit the model on. :type X: InteractionMatrix :return: Fitted algorithm :rtype: Algorithm
Source code in src/streamsight/algorithms/base.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
predict(X) ¶
Predicts scores, given the interactions in X
The input data is transformed to the expected type using :meth:_transform_predict_input. The predictions are made using the :meth:_predict method. Finally the predictions are then padded with random items for users that are not in the training data.
:param X: interactions to predict from. :type X: InteractionMatrix :return: The recommendation scores in a sparse matrix format. :rtype: csr_matrix
Source code in src/streamsight/algorithms/base.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |
get_params() abstractmethod ¶
Get the parameters of the object.
:return: Parameters of the object :rtype: dict
Source code in src/streamsight/models/base.py
38 39 40 41 42 43 44 45 | |
PopularityPaddingMixin ¶
Mixin class to add popularity-based padding to prediction methods.
Source code in src/streamsight/algorithms/base.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | |
pad_with_popularity = pad_with_popularity instance-attribute ¶
get_popularity_scores(X) ¶
Compute a popularity-based scoring vector for items.
This method calculates normalized interaction counts for each item, selects the top-K most popular items, and returns a vector where only those top-K items have their normalized scores (others are 0). This is used to pad predictions for unseen users with popular items.
:param X: The interaction matrix (user-item) to compute popularity from. :type X: csr_matrix :return: A 1D array of shape (num_items,) with popularity scores for top-K items. :rtype: np.ndarray
Source code in src/streamsight/algorithms/base.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | |
TopKAlgorithm ¶
Bases: Algorithm
Base algorithm for algorithms that recommend top-K items for every user.
Source code in src/streamsight/algorithms/base.py
328 329 330 331 332 333 334 | |
K = K instance-attribute ¶
similarity_matrix_ instance-attribute ¶
name property ¶
Name of the object's class.
:return: Name of the object's class :rtype: str
params property ¶
Parameters of the object.
:return: Parameters of the object :rtype: dict
identifier property ¶
Identifier of the object.
Identifier is made by combining the class name with the parameters passed at construction time.
Constructed by recreating the initialisation call. Example: Algorithm(param_1=value)
:return: Identifier of the object :rtype: str
IS_BASE = True class-attribute instance-attribute ¶
ITEM_USER_BASED instance-attribute ¶
seed = 42 instance-attribute ¶
rand_gen = np.random.default_rng(seed=(self.seed)) instance-attribute ¶
description property ¶
Description of the algorithm.
:return: Description of the algorithm :rtype: str
get_params() abstractmethod ¶
Get the parameters of the object.
:return: Parameters of the object :rtype: dict
Source code in src/streamsight/models/base.py
38 39 40 41 42 43 44 45 | |
get_default_params() classmethod ¶
Get default parameters without instantiation.
Uses inspect.signature to extract init parameters and their default values without instantiating the class.
Returns:
| Type | Description |
|---|---|
dict | Dictionary of parameter names to default values. |
dict | Parameters without defaults map to None. |
Source code in src/streamsight/algorithms/base.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
set_params(**params) ¶
Set the parameters of the estimator.
:param params: Estimator parameters :type params: dict
Source code in src/streamsight/algorithms/base.py
94 95 96 97 98 99 100 | |
fit(X) ¶
Fit the model to the input interaction matrix.
The input data is transformed to the expected type using :meth:_transform_fit_input. The fitting is done using the :meth:_fit method. Finally the method checks that the fitting was successful using :meth:_check_fit_complete.
:param X: The interactions to fit the model on. :type X: InteractionMatrix :return: Fitted algorithm :rtype: Algorithm
Source code in src/streamsight/algorithms/base.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
predict(X) ¶
Predicts scores, given the interactions in X
The input data is transformed to the expected type using :meth:_transform_predict_input. The predictions are made using the :meth:_predict method. Finally the predictions are then padded with random items for users that are not in the training data.
:param X: interactions to predict from. :type X: InteractionMatrix :return: The recommendation scores in a sparse matrix format. :rtype: csr_matrix
Source code in src/streamsight/algorithms/base.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |
TopKItemSimilarityMatrixAlgorithm ¶
Bases: TopKAlgorithm
Base algorithm for algorithms that fit an item to item similarity model with K similar items for every item
Model that encodes the similarity between items is expected under the similarity_matrix_ attribute.
This matrix should have shape (|items| x |items|). This can be dense or sparse matrix depending on the algorithm used.
Predictions are made by computing the dot product of the history vector of a user and the similarity matrix.
Usually a new algorithm will have to implement just the :meth:_fit method, to construct the self.similarity_matrix_ attribute.
Source code in src/streamsight/algorithms/base.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | |
similarity_matrix_ instance-attribute ¶
name property ¶
Name of the object's class.
:return: Name of the object's class :rtype: str
params property ¶
Parameters of the object.
:return: Parameters of the object :rtype: dict
identifier property ¶
Identifier of the object.
Identifier is made by combining the class name with the parameters passed at construction time.
Constructed by recreating the initialisation call. Example: Algorithm(param_1=value)
:return: Identifier of the object :rtype: str
IS_BASE = True class-attribute instance-attribute ¶
ITEM_USER_BASED instance-attribute ¶
seed = 42 instance-attribute ¶
rand_gen = np.random.default_rng(seed=(self.seed)) instance-attribute ¶
description property ¶
Description of the algorithm.
:return: Description of the algorithm :rtype: str
K = K instance-attribute ¶
get_params() abstractmethod ¶
Get the parameters of the object.
:return: Parameters of the object :rtype: dict
Source code in src/streamsight/models/base.py
38 39 40 41 42 43 44 45 | |
get_default_params() classmethod ¶
Get default parameters without instantiation.
Uses inspect.signature to extract init parameters and their default values without instantiating the class.
Returns:
| Type | Description |
|---|---|
dict | Dictionary of parameter names to default values. |
dict | Parameters without defaults map to None. |
Source code in src/streamsight/algorithms/base.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
set_params(**params) ¶
Set the parameters of the estimator.
:param params: Estimator parameters :type params: dict
Source code in src/streamsight/algorithms/base.py
94 95 96 97 98 99 100 | |
fit(X) ¶
Fit the model to the input interaction matrix.
The input data is transformed to the expected type using :meth:_transform_fit_input. The fitting is done using the :meth:_fit method. Finally the method checks that the fitting was successful using :meth:_check_fit_complete.
:param X: The interactions to fit the model on. :type X: InteractionMatrix :return: Fitted algorithm :rtype: Algorithm
Source code in src/streamsight/algorithms/base.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
predict(X) ¶
Predicts scores, given the interactions in X
The input data is transformed to the expected type using :meth:_transform_predict_input. The predictions are made using the :meth:_predict method. Finally the predictions are then padded with random items for users that are not in the training data.
:param X: interactions to predict from. :type X: InteractionMatrix :return: The recommendation scores in a sparse matrix format. :rtype: csr_matrix
Source code in src/streamsight/algorithms/base.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |