decay_popularity
DecayPopularity ¶
Bases: Algorithm
A popularity-based algorithm with exponential decay over data from earlier time windows.
Source code in src/streamsight/algorithms/decay_popularity.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | |
IS_BASE = False class-attribute instance-attribute ¶
K = K instance-attribute ¶
historical_data = [] instance-attribute ¶
num_items = 0 instance-attribute ¶
name property ¶
Name of the object's class.
:return: Name of the object's class :rtype: str
params property ¶
Parameters of the object.
:return: Parameters of the object :rtype: dict
identifier property ¶
Identifier of the object.
Identifier is made by combining the class name with the parameters passed at construction time.
Constructed by recreating the initialisation call. Example: Algorithm(param_1=value)
:return: Identifier of the object :rtype: str
ITEM_USER_BASED instance-attribute ¶
seed = 42 instance-attribute ¶
rand_gen = np.random.default_rng(seed=(self.seed)) instance-attribute ¶
description property ¶
Description of the algorithm.
:return: Description of the algorithm :rtype: str
get_params() abstractmethod ¶
Get the parameters of the object.
:return: Parameters of the object :rtype: dict
Source code in src/streamsight/models/base.py
38 39 40 41 42 43 44 45 | |
get_default_params() classmethod ¶
Get default parameters without instantiation.
Uses inspect.signature to extract init parameters and their default values without instantiating the class.
Returns:
| Type | Description |
|---|---|
dict | Dictionary of parameter names to default values. |
dict | Parameters without defaults map to None. |
Source code in src/streamsight/algorithms/base.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
set_params(**params) ¶
Set the parameters of the estimator.
:param params: Estimator parameters :type params: dict
Source code in src/streamsight/algorithms/base.py
94 95 96 97 98 99 100 | |
fit(X) ¶
Fit the model to the input interaction matrix.
The input data is transformed to the expected type using :meth:_transform_fit_input. The fitting is done using the :meth:_fit method. Finally the method checks that the fitting was successful using :meth:_check_fit_complete.
:param X: The interactions to fit the model on. :type X: InteractionMatrix :return: Fitted algorithm :rtype: Algorithm
Source code in src/streamsight/algorithms/base.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
predict(X) ¶
Predicts scores, given the interactions in X
The input data is transformed to the expected type using :meth:_transform_predict_input. The predictions are made using the :meth:_predict method. Finally the predictions are then padded with random items for users that are not in the training data.
:param X: interactions to predict from. :type X: InteractionMatrix :return: The recommendation scores in a sparse matrix format. :rtype: csr_matrix
Source code in src/streamsight/algorithms/base.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | |