Skip to content

decay_functions

DecayFunction

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
12
13
14
15
16
17
18
19
20
21
class DecayFunction:
    def __call__(self, time_distances: ArrayLike) -> ArrayLike:
        """Apply the decay.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: Array of event ages to which decays have been applied.
        :rtype: ArrayLike
        """
        raise NotImplementedError()

ExponentialDecay

Bases: DecayFunction

Applies exponential decay.

For each value x in time_distances the decayed value is computed as

.. math::

f(x) = e^{-\alpha * x}

where alpha is the decay parameter.

:param decay: Exponential decay parameter, should be in the [0, 1] interval. :type decay: float

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class ExponentialDecay(DecayFunction):
    """Applies exponential decay.

    For each value x in ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = e^{-\\alpha * x}

    where alpha is the decay parameter.

    :param decay: Exponential decay parameter, should be in the [0, 1] interval.
    :type decay: float
    """

    @classmethod
    def validate_decay(cls, decay: float) -> None:
        """Verify if the decay parameter is in the right range for this decay function."""
        if not (0 <= decay <= 1):
            raise ValueError(f"Decay parameter = {decay} is not in the supported range: [0, 1].")

    def __init__(self, decay: float):
        self.validate_decay(decay)
        self.decay = decay

    def __call__(self, time_distances: ArrayLike) -> ArrayLike:
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed time array.
        :rtype: ArrayLike
        """

        return np.exp(-self.decay * time_distances)

decay = decay instance-attribute

validate_decay(decay) classmethod

Verify if the decay parameter is in the right range for this decay function.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
39
40
41
42
43
@classmethod
def validate_decay(cls, decay: float) -> None:
    """Verify if the decay parameter is in the right range for this decay function."""
    if not (0 <= decay <= 1):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: [0, 1].")

ConvexDecay

Bases: DecayFunction

Applies a convex decay function.

For each value x in the time_distances the decayed value is computed as

.. math::

f(x) = \alpha^{x}

where :math:alpha is the decay parameter.

:param decay: The decay parameter, should be in the ]0, 1] interval. :type decay: float

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class ConvexDecay(DecayFunction):
    """Applies a convex decay function.

    For each value x in the ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = \\alpha^{x}

    where :math:`alpha` is the decay parameter.

    :param decay: The decay parameter, should be in the ]0, 1] interval.
    :type decay: float
    """

    @classmethod
    def validate_decay(cls, decay: float):
        """Verify if the decay parameter is in the right range for this decay function."""
        if not (0 < decay <= 1):
            raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]0, 1].")

    def __init__(self, decay: float):
        self.validate_decay(decay)
        self.decay = decay

    def __call__(self, time_distances: ArrayLike):
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed time array.
        :rtype: ArrayLike
        """

        return np.power(self.decay, time_distances)

decay = decay instance-attribute

validate_decay(decay) classmethod

Verify if the decay parameter is in the right range for this decay function.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
76
77
78
79
80
@classmethod
def validate_decay(cls, decay: float):
    """Verify if the decay parameter is in the right range for this decay function."""
    if not (0 < decay <= 1):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]0, 1].")

ConcaveDecay

Bases: DecayFunction

Applies a concave decay function.

For each value x in the time_distances the decayed value is computed as

.. math::

f(x) = 1 - \alpha^{1-\frac{x}{N}}

where :math:alpha is the decay parameter and :math:N is the max_distance parameter.

:param decay: The decay parameter, should be in the [0, 1[ interval. :type decay: float :param max_distance: Normalizing parameter, to put distances in the [0, 1]. :type max_distance: float

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class ConcaveDecay(DecayFunction):
    """Applies a concave decay function.

    For each value x in the ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = 1 - \\alpha^{1-\\frac{x}{N}}

    where :math:`alpha` is the decay parameter and :math:`N` is the ``max_distance`` parameter.

    :param decay: The decay parameter, should be in the [0, 1[ interval.
    :type decay: float
    :param max_distance: Normalizing parameter, to put distances in the [0, 1].
    :type max_distance: float
    """

    @classmethod
    def validate_decay(cls, decay: float):
        """Verify if the decay parameter is in the right range for this decay function."""
        if not (0 < decay <= 1):
            raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]0, 1].")

    def __init__(self, decay: float, max_distance: float):
        self.validate_decay(decay)
        self.decay = decay
        self.max_distance = max_distance

    def __call__(self, time_distances: ArrayLike):
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed array.
        :rtype: ArrayLike
        """
        if (time_distances > self.max_distance).any():
            raise ValueError(
                "At least one of the distances is bigger than the specified max_distance."
            )
        return 1 - np.power(self.decay, 1 - (time_distances / self.max_distance))

decay = decay instance-attribute

max_distance = max_distance instance-attribute

validate_decay(decay) classmethod

Verify if the decay parameter is in the right range for this decay function.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
115
116
117
118
119
@classmethod
def validate_decay(cls, decay: float):
    """Verify if the decay parameter is in the right range for this decay function."""
    if not (0 < decay <= 1):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]0, 1].")

LogDecay

Bases: DecayFunction

Applies a logarithmic decay function.

For each value x in the time_distances the decayed value is computed as

.. math::

f(x) = log_\alpha ((\alpha-1)(1-\frac{x}{N}) + 1)

where :math:alpha is the decay parameter and :math:N is the max_distance parameter.

:param decay: The decay parameter, should be in the range ]1, inf[ :type decay: float :param max_distance: Normalizing parameter, to put distances in the [0, 1]. :type max_distance: float

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class LogDecay(DecayFunction):
    """Applies a logarithmic decay function.

    For each value x in the ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = log_\\alpha ((\\alpha-1)(1-\\frac{x}{N}) + 1)

    where :math:`alpha` is the decay parameter and :math:`N` is the ``max_distance`` parameter.

    :param decay: The decay parameter, should be in the range ]1, inf[
    :type decay: float
    :param max_distance: Normalizing parameter, to put distances in the [0, 1].
    :type max_distance: float
    """

    @classmethod
    def validate_decay(cls, decay: float):
        """Verify if the decay parameter is in the right range for this decay function."""
        if not (1 < decay):
            raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]1, inf[.")

    def __init__(self, decay: float, max_distance: float):
        self.validate_decay(decay)
        self.decay = decay
        self.max_distance = max_distance

    def __call__(self, time_distances: ArrayLike):
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed time array.
        :rtype: ArrayLike
        """
        if (time_distances > self.max_distance).any():
            raise ValueError(
                "At least one of the distances is bigger than the specified max_distance."
            )
        return np.log(((self.decay - 1) * (1 - time_distances / self.max_distance)) + 1) / np.log(
            self.decay
        )

decay = decay instance-attribute

max_distance = max_distance instance-attribute

validate_decay(decay) classmethod

Verify if the decay parameter is in the right range for this decay function.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
158
159
160
161
162
@classmethod
def validate_decay(cls, decay: float):
    """Verify if the decay parameter is in the right range for this decay function."""
    if not (1 < decay):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: ]1, inf[.")

LinearDecay

Bases: DecayFunction

Applies a linear decay function.

For each value x in the time_distances the decayed value is computed as

.. math::

f(x) = \max(1 - (\frac{x}{N}) \alpha, 0)

where :math:alpha is the decay parameter and :math:N is the max_distance parameter.

:param decay: The decay parameter, should be in the [0, inf[ interval. :type decay: float :param max_distance: Normalizing parameter, to put distances in the [0, 1]. :type max_distance: float

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
class LinearDecay(DecayFunction):
    """Applies a linear decay function.

    For each value x in the ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = \\max(1 - (\\frac{x}{N}) \\alpha, 0)

    where :math:`alpha` is the decay parameter and :math:`N` is the ``max_distance`` parameter.

    :param decay: The decay parameter, should be in the [0, inf[ interval.
    :type decay: float
    :param max_distance: Normalizing parameter, to put distances in the [0, 1].
    :type max_distance: float
    """

    @classmethod
    def validate_decay(cls, decay: float):
        if not (0 <= decay):
            raise ValueError(f"Decay parameter = {decay} is not in the supported range: [0, +inf[.")

    def __init__(self, decay: float, max_distance: float):
        self.validate_decay(decay)
        self.decay = decay
        self.max_distance = max_distance

    def __call__(self, time_distances: ArrayLike):
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed time array.
        :rtype: ArrayLike
        """
        if (time_distances > self.max_distance).any():
            raise ValueError(
                "At least one of the distances is bigger than the specified max_distance."
            )
        results = 1 - (time_distances / self.max_distance) * self.decay
        results[results < 0] = 0
        return results

decay = decay instance-attribute

max_distance = max_distance instance-attribute

validate_decay(decay) classmethod

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
203
204
205
206
@classmethod
def validate_decay(cls, decay: float):
    if not (0 <= decay):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: [0, +inf[.")

InverseDecay

Bases: DecayFunction

Invert the scores.

Decay parameter only added for interface unity. For each value x in the time_distances the decayed value is computed as

.. math::

f(x) = \frac{1}{x}
Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class InverseDecay(DecayFunction):
    """Invert the scores.

    Decay parameter only added for interface unity.
    For each value x in the ``time_distances`` the decayed value is computed as

    .. math::

        f(x) = \\frac{1}{x}
    """

    def __call__(self, time_distances: ArrayLike):
        """Apply the decay function.

        :param time_distances: array of distances to be decayed.
        :type time_distances: ArrayLike
        :returns: The decayed time array.
        :rtype: ArrayLike
        """

        results = time_distances.astype(float).copy()
        results[results > 0] = 1 / results[results > 0]
        results[results == 0] = 1
        return results

NoDecay

Bases: ExponentialDecay

Turns the array into a binary array.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
256
257
258
259
260
class NoDecay(ExponentialDecay):
    """Turns the array into a binary array."""

    def __init__(self):
        super().__init__(0)

decay = decay instance-attribute

validate_decay(decay) classmethod

Verify if the decay parameter is in the right range for this decay function.

Source code in src/streamsight/algorithms/time_aware_item_knn/decay_functions.py
39
40
41
42
43
@classmethod
def validate_decay(cls, decay: float) -> None:
    """Verify if the decay parameter is in the right range for this decay function."""
    if not (0 <= decay <= 1):
        raise ValueError(f"Decay parameter = {decay} is not in the supported range: [0, 1].")